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Abstract: Age-related macular degeneration (AMD) is the leading cause of 
blindness among elderly individuals. Geographic atrophy (GA) is a 
phenotypic manifestation of the advanced stages of non-exudative AMD. 
Determination of GA extent in SD-OCT scans allows the quantification of 
GA-related features, such as radius or area, which could be of important 
value to monitor AMD progression and possibly identify regions of future 
GA involvement. The purpose of this work is to develop an automated 
algorithm to segment GA regions in SD-OCT images. An en face GA 
fundus image is generated by averaging the axial intensity within an 
automatically detected sub-volume of the three dimensional SD-OCT data, 
where an initial coarse GA region is estimated by an iterative threshold 
segmentation method and an intensity profile set, and subsequently refined 
by a region-based Chan-Vese model with a local similarity factor. Two 
image data sets, consisting on 55 SD-OCT scans from twelve eyes in eight 
patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients with 
GA, respectively, were utilized to quantitatively evaluate the automated 
segmentation algorithm. We compared results obtained by the proposed 
algorithm, manual segmentation by graders, a previously proposed method, 
and experimental commercial software. When compared to a manually 
determined gold standard, our algorithm presented a mean overlap ratio 
(OR) of 81.86% and 70% for the first and second data sets, respectively, 
while the previously proposed method OR was 72.60% and 65.88% for the 
first and second data sets, respectively, and the experimental commercial 
software OR was 62.40% for the second data set. 
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Chapter 6. 

1. Introduction 

Age-related macular degeneration (AMD) is the most common cause of legal blindness 
among elderly individuals in developed countries [1,2]. AMD is a chronic, progressive 
disease with various phenotypic manifestations, different disease stages, and variable rates of 
progression [3]. Choroidal neovascularization (CNV) and Geographic atrophy (GA) 
characterize late stages of the disease [4–6]. The later occurs in 20% of patients with 
preexisting clinical hallmarks of this degenerative disease [2, 5]. The characteristic 
appearance of GA results from the loss of the photoreceptor layer, retinal pigment epithelium 
(RPE), and choriocapillaris [7,8]. In most cases, GA first appears in the parafoveal location 
and progresses around the fovea and then through the fovea with concomitant loss of central 
visual acuity [9,10]. Characterization of retinal regions affected by GA is fundamental in the 
diagnosis of advanced AMD because it could help clinicians to objectively monitor AMD 
progression, possibly identify regions of future GA involvement, or make a treatment 
decision. However, this characterization depends directly on the accurate segmentation and 
quantification of GA-affected regions and their properties, such as the extent, radius or area of 
abnormalities. Apart from being extremely challenging and time consuming, manual or semi-
automatic GA segmentation is subject to user-variability, yielding potentially important 
differences. Thus, techniques to reliably and automatically outline and quantify GA regions 
are becoming important in the diagnosis of advanced AMD and for predicting future 
expansion of GA. 

The appearance and progression of GA has been extensively studied using reflectance 
fundus imaging [11] and auto-fluorescence imaging [12] (2D topographic imaging 
techniques). However, these imaging techniques can only provide 2D topographic maps 
showing the atrophic area, and they are unable to resolve retina structure axialy. The 
development of spectral-domain optical coherence tomography (SD-OCT) permitted the 
differentiation of retinal structures in the axial direction, generating 3D representations of 
retinal reflectivity and allowing an additional characterization of GA [13]. Macular SD-OCT 
images, normally covering a region of 6 × 6mm of the macula region, are now becoming 
standard in an ophthalmic clinical visit and they allow the quantification of volumetric 
features that were previously inaccessible to fundus photography or FAF, for example, 
thickness and volume of the full retina or restricted to a particular collection of layers, or 
volume of drusen, cysts or defects in the ellipsoid zone. SD-OCT has also been used to 
characterize morphologic alterations that appear within the atrophic area, as well as within the 
surrounding retinal tissues. These quantifications have proven to be closely associated with 
visual acuity, enable assessment of multiple retinal diseases and conditions, and even predict 
disease progression. A necessary step to generate these quantifications in eyes affected by GA 
and to evaluate volumetric retina behavior in the presence of GA is obtaining an accurate 
outline of GA in SD-OCT images, therefore motivating this work. GA regions are normally 
visualized in SD-OCT by considering an axial projection of the 3-D data (en face OCT 
fundus image), which permits direct visualization of GA throughout the macula as a bright 
region within the image, owing to the increased penetration of light into the choroid where 
atrophy occurs. Previous studies [2, 14] have evaluated the utility of SD-OCT for grading GA 
as compared with FAF images and reported that SD-OCT projection images can be used to 
successfully identify and measure areas of GA. Therefore, SD-OCT seems to be an 
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appropriate imaging modality for automatically characterizing size, location and progression 
of GA lesions. 

Although SD-OCT has proven successful in identifying and measuring GA regions, 
automatic segmentation of SD-OCT images containing GA is a difficult challenge due to low 
contrast and complicated retinal pathological structure. Previous work [15] has been focused 
on the estimation of the intra-retinal layers in eyes with GA using graph theory and dynamic 
programming, and the segmentation results were later used to measure the thickness of RPE, 
which can be used as a biomarker of GA appearance. However, this work did not produce 
outlines describing the GA region, as this was not the main focus of this work. The study of 
volume measurement of RPE as predictors of progression to advanced AMD has been 
reported by Folgar et al [16]. They discussed that the RPE-drusen complex abnormal thinning 
is believed to be an early precursor to the formation of GA lesions as well as a biomarker for 
the presence of any noncentral GA and the development of central GA over 2-year follow-up. 
Although the volume or thickness of RPE can be measured in SD-OCT images and 
considered as a biomarker of GA appearance, developing an automated segmentation 
algorithm solely based on the detection of missing regions of RPE is not straightforward. The 
relatively thin bright band representing the RPE in SD-OCT images, the increased signal 
underneath the regions of RPE loss and the characteristic noise in SD-OCT images makes the 
task of directly identifying GA regions by characterizing RPE loss in an automated fashion 
prone to error. 

To our knowledge, very few methods [17–19] have been described for segmentation of 
GA in SD-OCT images. Those that have been reported provided good agreement between 
their methods and manually-defined GA regions, although still subject to several initialization 
limitations. These previous methods relied on the projection of the 3D OCT data in 2D en 
face images, which were later used to segment GA locations using level set functions. The 
limitations of these previous methods [17,18] is that an interactive contour selection around 
the GA region is needed to initialize a level set function, resulting in possible reader 
variability and complications when analyzing a large data set. A geometric deformable model 
driven by dynamically updated probability fields proposed by Tsechpenakis et al. [19] was 
employed to segment GA from en face SD-OCT images, and provided good segmentation 
performance. However, this model needed to use different markers for model initialization. 

Segmentation models based on active contours and analysis of global or local image 
regions [20–24] have been widely studied and used due to their ability to adaptively handle 
the changes of topological structure, especially the Chan-Vese model (C-V) [24]. Although 
global region-based models [20, 24] have shown accurate image segmentation by using the 
statistical information inside and outside a contour to guide the curve evolution, their 
performance drops in images having intensity inhomogeneity. Later, local region-based 
models [21–23] were proposed to improve the segmentation performance on images with 
inhomogeneity. However, all of the region-based models need a markers selection for 
initialization. This fact and the presence of noise of different characteristics possibly 
influence their performance. 

The purpose of this work is to develop a reliable, automatic, and effective approach for 
GA segmentation and quantification in SD-OCT images. Differently from the state-of-art 
local region-based models, the two intensity average functions in the improved C-V model 
are still global mean intensity rather than local mean intensity on the two sides of active 
contour, so the improved C-V model can be considered as a global region-based model. 
Moreover, the integration of the spatial distance within a local window and the difference 
between neighboring pixels and the global mean intensity is embedded in the C-V model to 
penalize the global data term so that the improved C-V model can reduce the influence of 
noisy pixels, which is called the local similarity factor. Two novelties of our method come 
from the construction of an automated initialization method and the development of an 
improved Chan-Vese model via local similarity factor (CVLSF) to generate the segmented 
outlines of GA-affected regions. The automatic initialization procedure includes an iterative 
threshold segmentation method and refinement of candidate regions using an intensity profile 
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set. The improvements made to the traditional Chan-Vese method [24] consider the 
introduction of a local similarity factor (LSF), which balances similarities observed by the 
spatial distance and gray level differences within a local window. The improved CVLSF 
model provides properties that allow the results to be less sensitive to noise. We conducted an 
extensive evaluation to demonstrate the ability of the proposed method segmenting GA in 
SD-OCT images acquired during clinical practice. We also evaluated our method’s robustness 
to noise and compared it to that of a traditional Chan-Vese [24] approach in a synthetic image 
with different noise characterizations at several noise strength levels. 

2. Methods 

We have developed a fully automated pipeline for GA segmentation, as shown in Fig. 1. The 
data input comprises the series of SD-OCT scan data. The axial location of the layered 
structure in the SD-OCT scans is estimated using an intra-retinal segmentation algorithm 
[29], the results of which are used to generate topographic GA projection images [17]. We 
segment the coarse GA regions using an iterative segmentation method and then fill the 
missing regions with a set of GA candidate regions, extracted from an intensity profile set 
recorded at each horizontal location in each B-scan image. These results are then taken as the 
initialization for a modified region-based Chan-Vese (C-V) [24] method with local similarity 
factor (CVLSF), built to further identify and refine GA regions. 

 

Fig. 1. The pipeline of the proposed automatic GA segmentation method. 

2.1 Generation of GA projection image 

There are three main methods for generating GA projection images from SD-OCT volumetric 
data sets: (1) The summed-voxel projection (SVP) [25], where the images are generated by 
adding all the voxel values in the 3D data along the axial A-scan lines; (2) the sub-RPE slab 
projection, available as the Cirrus Advanced RPE Analysis software in the Cirrus HD-OCT 
review software (version 6.0) [26] and the restricted summed-voxel projection method 
(RSVP) [17], both formed by projecting a region beneath the robust RPE fit in the axial 
direction; and (3) the restricted summed-area projection (RSAP) [31], which restricts the axial 
projection of SD-OCT images to the regions beneath the Bruch’s membrane (BM) and also 
considers the choroidal vasculature’s influence. The work presented here employs an 
approach similar to the sub-RPE slab method to generate a GA projection image, but 
restricting the averaged sub-volume to an upper limit indicated by a surface 39 microns (20 
pixels in the images used in this work) below a fitted RPE outer boundary (estimated by 
automated segmentation [29]) and a lower limit h pixels below the upper limit surface. The 
parameter h indicates the maximum depth employed to generate the projection images and 
was set experimentally with the goal of maximizing GA visualization (see later experimental 
results and analysis section). Figure 2 shows an example comparing a traditional SVP 
projection image and the approach employed here in a patient with GA. We can observe how 
this restriction in the projected sub-volume increases the contrast observed between GA 
region and background. This restriction may also reduce the influence of other possible 
abnormalities like drusen or inner retina deformities in the projected image. 
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Fig. 2. An example of GA projection image generation. (a) B-scan across the center of the 
fovea, with the projection upper and lower limit boundaries used in our approach marked with 
white lines. (b) Traditional SVP GA projection image. (c) Resulting GA projection image used 
in our approach. The blue lines indicated in (b) and (c) correspond to the location of the B-scan 
across the center of the fovea shown in (a). 

2.2 Iterative GA segmentation 

Considering the intensity inhomogeneity and high noise level typically present in GA 
projection images (shown in Fig. 3(a) and 3(b)), conventional thresholding techniques 
[27,31,32] would produce masks that are too coarse to be considered as an adequate 
initialization for the subsequent CVLSF model, because they frequently exclude large 
portions of GA regions that cause convergence into local minima during the refinement step. 
An alternative iterative threshold method based on global image information is proposed here 
to coarsely segment GA regions from the projection image. This iterative threshold is 
computed considering a restricted region within the image that gets updated during 
subsequent iterations, and is set to decrease and converge to a certain value (see later 
experimental results and analysis section). Assuming that the superscript n indicates the nth 
iteration, a threshold value Thn is generated by the OTSU threshold selection method [27], 
considering the pixels in the original GA projection image I that are within a restricted region 
NRn (as indicated in Eq. (1)). This threshold Thn separates NRn into foreground and 
background regions, GRn and BRn (indicated in Eq. (2) and (3)), respectively. The updated 
restricted region in the n + 1th iteration, NRn+1, is obtained by considering the pixels with 
values under the mean value of the foreground region GRn (Eq. (4)). We chose the initial 
restricted region NR1 to contain all the pixels in I, and a stopping criteria was set for the 
iteration when the difference between two consecutive thresholds (Thn+1 - Thn) is lower than a 
given constant value (indicated in Eq. (5) set to c = 0.02 in our experiments). The foreground 
region GRn obtained in the last iteration is then used as the coarsely segmented GA region. 
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An example of a first iteration is illustrated in Fig. 3. Figure 3(b) shows the histogram of 
the whole image, background region and GA region corresponding to Fig. 3(a), where manual 
GA outlines are indicated. The histogram highlights the inhomogeneity of the GA projection 
image, showing intensity values overlapping between background and GA regions. Figure 
3(c) shows that the initial threshold Th1 (with value shown with a green line in Fig. 3(b)), 
selected by applying the OTSU method to the whole image, NR1, leads to missing a large part 
of GA regions with similar intensity to the background. Figure 3(d) displays the histogram of 
NR1, with the mean value of the OTSU foreground region GR1 as new threshold to identify 
the restricted region for the next iteration, NR2. Subsequent iterations are then repeated until 
the preset stopping criteria are met, producing the coarse GA segmentation displayed in Fig. 
3(e). Although the results from this iterative segmentation are coarse and include multiple 
regions where GA is not present, they proved to serve as a good initial step in the 
initialization for our methods, where the GA presence is later refined. 

 

Fig. 3. (a) GA projection image with GA contour generated by manual segmentation. (b) 
Histogram of GA region and background and the threshold using OTSU method over the 
whole projection image. (c) Segmentation result obtained by OSTU method in the first 
iteration. (d) Histogram of the whole image where the mean value of the foreground region 
resulting from the first iteration and the values corresponding to the restricted region for the 
second iteration are indicated. (e) Final result for the coarse GA segmentation. 
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2.3 GA candidate region extraction 

The coarsely segmented GA regions obtained in the previous iterative step (section 2.2), are 
still insufficient to be considered as an initialization outline for the CVLSF method. Isolated 
low-intensity false negative regions within correctly detected GA regions and extensive false 
positive regions (as can be observed in Fig. 3(e)) tend to cause “leakage” (segmentation 
expansion to neighboring structures) in Chan Vese methods, yielding sub-optimal results. A 
GA candidate region extraction refinement is considered here with the goal of further 
including isolated background regions and excluding false positive locations in the CVLSF 
model initialization outline. 

Horizontal GA candidate regions are first determined by considering the maximum values 
of a filtered version of the projection image at each horizontal location, a process illustrated in 
the example shown in Fig. 4. The generated projection image (example shown in Fig. 4(a)) is 
first filtered using a moving average filter of 5 × 5 pixels in order to smooth out possible 
noise. Figure 4(b) shows the horizontal intensity profile recorded at the vertical coordinate 
shown in Fig. 4(a) (blue line) and Fig. 4 (c) shows the filtered version of this profile. We then 
compute the maximum value at each horizontal location of the filtered image from the set of 
vertical scan locations, generating a maximum horizontal intensity profile. Figure 4(d) 
displays the collection of horizontal filtered intensities recorded at each vertical location in 
the image, with the maximum horizontal intensity profile shown in Fig. 4(e). The locations in 
the horizontal axis where the maximum intensity profile takes values higher than a constant 
threshold (selected experimentally as the mean value of intensity profile set minus its 
standard deviation) are then considered as horizontal GA candidate locations. The maximum 
horizontal intensity profile is shown in Fig. 4(f) together with the selected threshold indicated 
by the red line. 

 

Fig. 4. (a) GA projection image. (b) Projection image intensity profile at the vertical location 
indicated by the blue line in (a). (c) Intensity profile at the same vertical location after filtering 
by 5 × 5 moving average filter. (d) Collection of intensity profiles at all the vertical locations 
in the image. The maximum horizontal profile is shown in (e) and (f). The red line shown in 
(e) indicates the selected threshold and the light blue braces indicate horizontal GA candidate 
regions. 

The result obtained from this horizontal candidate region selection is employed to refine 
the previous coarse GA segmentation (example shown in Fig. 3(e)). These refinements 
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consist of three consecutive steps: (1) Morphological opening operation applied to remove 
small isolated regions and smooth borders, with a disk-shaped structuring kernel of radius 0.2 
mm; (2) Removal of connected regions at the image border and away from the image center. 
Isolated regions with all pixels at a normalized distance greater than distance threshold (Dth) 
from the center of the image and intensity threshold less than an intensity threshold (Ith), 
where Dth and Ith are set to be 2mm and one third of the maximum intensity of the projection 
image, respectively, are removed from the segmentation. This is done to eliminate the 
possible regions related to inhomogeneity in the image and optic nerve head regions, which 
may be partially appearing showing high intensity values; (3) Region filling using the 
horizontal candidate region selection. The horizontal regions in each vertical axis that belong 
to those selected as horizontal candidates and are surrounded by regions selected after the two 
previous steps are filled to form the final GA candidate region mask. An example illustration 
of these three refinement steps is shown in Fig. 5. 

 

Fig. 5. (a) Result obtained by morphological opening of the coarse segmentation shown in Fig. 
3(e), (b) Results after elimination of connected regions at the image border. (c) Refinement 
results after filling considering the horizontal GA candidate regions. 

2.4 Segmentation of GA regions based in an improved C-V model via local similarity factor 

The results obtained after the coarse segmentation refinement are taken as an initialization for 
an improved region-based C-V model [24] with a local similarity factor (CVLSF), which is 
introduced here to suppress noise influence, while guaranteeing detail preservation in the 
segmentation results. The objective function for partitioning an image ( ),I x y ∈ Ω  into two 

regions (GA region and background) is defined as: 
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where 0μ ≥  is fixed constant parameter, and 1 20, 0λ λ> > control the contributions of the 
internal energy and external energy terms, respectively, where object regions taken as internal 
term are the inside of the contour C (in(C)) and background regions considered as external 
term are the outside of C (out(C)). Using the level set definition [28] to represent C, that is, C 
is the zero level set of a level set function ( ),x yΦ , we can rewrite this objective function as: 
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where ( )( ),H x yΦ  and ( )( ),x yδ Φ  are Heaviside function and Dirac function, respectively, 

which are generally defined as: 
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If we keep ( ),x yΦ  fixed and minimize the energy function (7) with respect to the constants 

c1 and c2 
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The local similarity factor is then defined as: 
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where ( ),x yN  represents a neighborhood defined around the central pixel ( ),x y  (in our 

experiments defined as a 5 × 5 pixel window) and ( ) ( ), , ,x y i jd  is the Euclidean distance between 

pixels located at ( ),x y  and ( ),i j . 

Minimizing the energy function (7) with respect to ( ),x yΦ , we obtain the corresponding 

variational level set formulation as follows: 
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The data term in the CVLSF model (Eq. (11) is similar to the traditional C-V model [24], 
differing by the introduction of the local similarity factor LSF. This factor reduces the 
influence of noisy pixels in the segmentation results. The spatial distance in the LSF was 
included to balance the intensity difference between neighboring pixels and global mean 
intensity on two sides of active contour, aiming for convergence to stable value as the number 
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of iterations increase. The LSF takes into consideration spatial distance and its value 
penalizes the data term so that the energy function (7) can suppress the influence of noisy 
pixels. The LSF therefore poses several advantages over the traditional model: (1) 
Improvement of model against noise of different characteristics. The combination of the 
spatial distance and gray level difference between a central pixel and surrounding pixels 
within its local neighborhood balances their similarity and highlights the differentiation 
between foreground and background regions, reducing noise influence. The LSF value 
changes in each iteration step, converging to a particular value adapted to the noise properties 
observed within the local window; (2) Another advantage of the LSF is its ability to preserve 
more image information. The local spatial information varies adaptively according to the 
Euclidean distance between neighbor pixels and central pixel, while intensity differences 
change automatically between the pixels within the local window and the global mean pixel 
value. We have included a detailed analysis of the method’s robustness to noise as compared 
to the traditional C-V model as well as a comparison of results in GA segmentation in the 
results section. 

In order to accelerate the segmentation speed we also employed coarse-to-fine processing 
scheme. The GA projection images and initialization outline were first down-sampled to half 
their resolution in both vertical and horizontal directions and were segmented by the CVLSF 
method. The results are then up-sampled to the original image resolution and taken as 
initialization for the fine CVLSF segmentation 

2.5 Experimental data and evaluation studies 

Our algorithm was implemented in Matlab (The MathWorks, Inc.) and run on a 2.16 GHz 
Pentium Dual PC with 3 GB memory. Two different data sets were used to evaluate the 
performance of our algorithm, where all the cases presented with advanced non-nonvascular 
AMD with extensive GA. Both data sets are the same as described in a previous publication 
[17]. The first data set consisted of 55 longitudinal SD-OCT cube scans from twelve eyes in 
eight patients. Each cube consisted of 512 × 128 × 1024 voxels corresponding to a 6 × 6 × 2 
mm3 volume in the horizontal, vertical and axial directions, respectively, centered at the 
macular region of the retina. The second data set consisted of 56 SD-OCT cube scans from 56 
eyes in 56 patients with GA. Each cube consisted of 200 × 200 × 1024 voxels corresponding 
to a 6 × 6 × 2 mm3 volume in the horizontal, vertical and axial directions, respectively, 
centered at the macular region of the retina. All scans in both data sets were acquired with a 
Cirrus OCT device (Carl Zeiss Meditec, Inc., Dublin, CA). 

For the first data set, manual outlines were drawn by two independent readers in the 
projection images in two repeated separate sessions, and ground truth segmentation outlines 
were obtained from them by considering those regions outlined by two or more readers or 
sessions [17]. For the second data set, manual outlines were available as indicated in 
corresponding FAF images, which were manually registered to their corresponding location 
in the projection images and considered as ground truth segmentation. Both data sets were 
segmented using the method proposed here and a previously proposed method [17] (the later 
indicated as “QC” method). For the second data set we also had available segmentations as 
produced by an experimental commercial method (available in Cirrus OCT devices, Carl 
Zeiss Meditec, Inc., Dublin, CA), which we will call “commercial software”. The 
segmentation results obtained by our algorithm, QC’s method segmentation and the 
commercial software results (for the second data set) were compared quantitatively to the 
ground truth manual segmentations and independent outlines drawn by the two different 
readers and sessions (for the first data set). Intra-reader agreement and inter-reader agreement 
were measured by computing the differences between the manual segmentations drawn at the 
two separated repeated session and by the two different readers in the first data set. 

We employed four metrics to perform these quantitative comparisons: Absolute area 
difference (AAD), overlap ratio (OR), correlation coefficient (cc) and p-value in a U-test. The 
AAD measures the absolute difference between the GA areas as segmented by two different 
methods: 
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where nX  and nY  indicate the regions inside the segmented GA contour of scan n, produced 

by the methods (or graders) X and Y, respectively. N  indicates the total number of images in 
the set. The OR is defined as the percentage of area in which both segmentation methods 
agree with respect to the presence of GA over the total area in which at least one of the 
methods detects GA (Jaccard index). The mean OR and standard deviation values are 
computed across scans in the data sets in the same way as for AAD 
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where the operator ∪ and ∩ indicate union and intersection, respectively. The correlation 
coefficients were computed using Pearson’s linear correlation between the measured areas of 
GA computed by the segmentation of different methods or readers, measuring the linear 
dependence using each scan as an observation. We used the p-value in the U-test to measure 
the possible statistical differences in the area measured between two segmentation methods or 
readers. 

3. Experimental results and analysis 

3.1 Parameter analysis 

As explained earlier (in section 2.1), the GA projection image is generated considering a 
depth of sub-RPE parameter h. This parameter indicates the axial lower limit in pixels 
underneath the RPE, used to create the GA projection images and was selected through 
experimentation in a separate set of images. We established the value of h so as to maximize 
GA separability in the projection image, with separability defined as 
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where iB indicates the binarized result with threshold i, where the GA projection image was 
previously normalized linearly to take values in the [0 255] range, and G represents a 
manually obtained GA segmentation gold standard. K denotes the total number of pixels in 
the GA projection image. Measured this way, separability reflects GA segmentation 
feasibility assuming a constant threshold and it is therefore related to clarity in the 
differentiation of GA from background in the image. We measured the average separability in 
a set of 43 SD-OCT cubes from 10 eyes, separate from the cases included in the following 
evaluation of our methods, at different values of depth parameter, ranging from 100 to 300 
pixels (approximately 0.2~0.6mm) in 10 pixel steps. Figure 6(a) shows the measured average 
GA separability at different depth of sub-RPE region. We can observe that GA separability 
increased as the depth parameter increased from 100 to 220 pixels, maintained a stable value 
from 220 to 240 pixels, and then decreased as the depth value increased from 240 to 300 
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pixels. We then selected a value of h = 230 pixels (approximately 0.45mm) for the generation 
of the RSVP projection images that are later segmented using the methods introduced here. 

Figure 6(b) displays a scatterplot of detected GA area when using our proposed method 
vs. the actual GA area, evaluating the performance of the proposed method on a variety of 
images with different degrees of GA extent. The high correlation coefficient (cc = 0.973) 
observed between the proposed method and the manual gold standard indicates that the 
measurement of GA regions by the proposed method is adequate, given the proposed method 
parameters. 

 

Fig. 6. (a) Average GA reparability across a set of 43 SD-OCT cubes for different values of 
depth of sub-RPE parameter (h). (b) a scatterplot of estimated area vs actual area of the GA 
regions. 

The iterative threshold method relies on comparing the difference between thresholds at 
subsequent iterations to a given constant value as a stopping criterion. This value was 
considered so that the majority of GA regions are included in the coarse results, while 
ensuring there are only small number of false positive pixels. Figure 7 describes an example 
that shows two coarse results obtained by different threshold values, as selected by the 
stopping criterion explained above and as generated when the iterative process converged. 
The threshold value variation throughout subsequent iterations is also shown. We can observe 
how the stopping criteria implemented here (Fig. 7(a)) produced a better coarse segmentation 
than considering the convergence value (Fig. 7(c)). 

 

Fig. 7. (a) Refined coarse result with the stopping criteria presented here. (b) Iterative 
threshold variation throughout subsequent iterations. (c) Refined coarse result at convergence. 
The white outlines represent the refined coarse results. 
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3.2 Evaluation of robustness at different noise characteristics 

In the CVLSF model, the LSF was introduced to penalize the global data term of C-V model 
so that the CVLSF model can reduce the influence of the noise, so the CVLSF model can be 
considered as an improved C-V model rather than a local region-based model. As a 
consequence, we evaluated the robustness of the CVLSF method in the presence of noise 
having different characteristics as compared to the traditional C-V model [24] in a synthetic 
image (of size 61 × 64 pixels) and in the first data set. The robustness of the CVLSF model 
mainly depends on contribution of the LSF defined in a local window. The local window size, 
which specifies the set of neighborhood pixels, controls the extent of noise preservation. The 
experimental shows that the segmentation accuracy keeps relatively stable for the local 
window size of 5 × 5. In the experiment, a 5 × 5 local window centered on each pixel is set 
for the local similarity factor. 

Results on the synthetic image are shown in Fig. 8, where parameters in the C-V model 
and CVLSF model are set to be 1 2 1λ λ= = , 2500μ = , 0.1ε = , 0.1tΔ = and 1 2 1λ λ= = , 

0.05μ = , 0.1ε = , 0.5tΔ = , respectively. This synthetic image was corrupted by artificial 
noise of varying known characteristics and strength using the function imnoise in Matlab to 
simulate the noise in GA projection image. The uncorrupted image consisted of a background 
of constant value and three targets with constant intensity different than the background. Two 
types of random noise realizations were used to corrupt the original image: Gaussian noise 
and speckle noise. Each noise type was tested at five different noise variance levels. We can 
observe how the segmentation becomes a harder task as the noise level increases. The C-V 
model produced segmentation results that were more affected by the noise level than the 
proposed CVLSF for all noise distribution characteristics, with accuracy decreasing as noise 
level increased. On the other hand, our CVLSF method presented a lower dependence with 
noise level, maintaining a relatively similar accuracy at increasing levels of noise. 

 

Fig. 8. Quantitative comparison of segmentation accuracy of our proposed CVLSF method 
(red dashed line) and the traditional C-V method (blue dashed line) at different noise levels. 
The figure is divided in three rows for two different noise distribution characteristics, with the 
particular images used for testing displayed in each row. The images in the first row were 
corrupted by Gaussian noise under 5 noise levels, i.e., {0.001, 0.005, 0.01, 0.02, 0.03}and the 
images in the second row were corrupted by Speckle noise level under 5 noise levels, i.e., 
{0.01, 0.05, 0.1, 0.15, 0.2}. 
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In order to demonstrate the robustness of the CVLSF model in GA projection images, a 
comparison of the segmentation accuracy results of the traditional C-V method, the traditional 
C-V method with bilateral filtering as a denoising pre-processing step, and the proposed 
CVLSF method in the first data set is shown in Fig. 9, where we set 1 2 1λ λ= = , 2500μ = , 

0.1ε = , 0.1tΔ = in the C-V model and set 1 2 1λ λ= = , 0.03μ = , 0.05ε = , 0.01tΔ =  in the 
CVLSF model. The figure displays the mean accuracy in terms of Jaccard index (blue bars) in 
the first data set and the outlines on an example GA projection image resulting from each 
segmentation method. We can observe that the C-V model produced segmentation results 
(mean Jaccard index of 0.42 and 0.48 for the non-filtered and filtered versions, respectively) 
that were more affected by the noise level and intensity inhomogeneity than the proposed 
CVLSF for original images (mean Jaccard index 0.82). The visual results in an example also 
demonstrated that the CVLSF model provides better results than C-V model with non-filtered 
and filtered image. These results in Figs. 8 and 9 suggest the better performance of the 
proposed method and higher robustness to noise characteristics. 

 

Fig. 9. Quantitative comparison of segmentation accuracy of our proposed CVLSF method and 
the traditional C-V method in the first data set. The first and second columns show the results 
of the traditional C-V method and the traditional C-V method with bilateral filtering as a 
denoising pre-processing step, respectively. The third column shows the results for the 
proposed CVLSF method. The blue bars indicate the mean Jaccard index resulting from each 
segmentation method in the first data set, and the images on the right of each bar show the 
segmented outlines on an example GA projection image. Red and white outlines are the final 
segmentation results and initialization outlines, respectively. 

3.3 Evaluation of GA segmentation 

Figure 10 displays several examples with GA regions of different size in the testing data set, 
where red outlines indicate the segmentation results for the CVLSF model. These examples 
show cases with different intensity inhomogeneity and complexity, in which accurate GA 
segmentation is a difficult challenge. We can observe that the outlines produced by the 
method presented here were relatively precise, given the difficulty of the task. 
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Fig. 10. Examples displaying the automatically segmented GA regions in SD-OCT projection 
images. 

Figure 11 displays example collected manual outlines in examples from the first test data 
set (as indicted in section 2.5) with outlines made by the two readers at the two repeated 
sessions indicated with different colors. The intra-observer and inter-observer differences can 
be visualized. The quantitative results in inter-observer and intra-observer agreement 
evaluation for this first data set are summarized in Table 1, where Ai (i = 1, 2) represents the 
segmentations of the first grader in the i-th session, and Bi (i = 1, 2) represents the 
segmentations of the second grader in the i-th session. Inter-observer differences were 
computed by considering the union of both sessions for each grader: A1&2 and B1&2 represent 
the first and second grader, respectively. The intra-observer and inter-observer comparison 
showed very high correlations coefficients (cc) and U-test p-values, indicating very high 
linear correlation and no statistical differences both between different readers and for the 
same reader at different sessions. The overlap ratios (all > 90%) and the absolute GA area 
differences (all < 5%) indicate very high inter-observer and intra-observer agreement, 
highlighting that the measurement and quantification of GA regions in the generated 
projection images seem effective and feasible. 

 

Fig. 11. Manual segmentation examples by two different experts and at two different sessions 
outlined in RSVP projection images. The region of interest outlined in orange in each RSVP 
projection image is also shown zoomed in for larger detail. The color label for each observer 
and session outline is indicated in the legend in the bottom right. 
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Table 1. Intra-observer and inter-observer correlation coefficients (cc), paired U-test p-
values, absolute GA area differences (AAD) and overlap ratio (OR) evaluation 

Methods compared 
patients/ 

cubes cc 
p-value 
(U-test) 

AAD [mm2] 
(mean, std) 

AAD [%] 
(mean, std) 

OR [%] 
(mean, std) 

Expert A1- Expert A2 8 / 55 0.998 0.658 0.239 ± 0.210 3.70 ± 2.97 93.29 ± 3.02 

Expert B1- Expert B2 8 / 55 0.996 0.756 0.243 ± 0.412 3.34 ± 5.37 93.06 ± 5.79 

Expert A1&2- Expert B1&2 8 / 55 0.995 0.522 0.314 ± 0.466 4.68 ± 5.70 91.28 ± 6.04 

We evaluated the performance of the proposed segmentation algorithm in the first data set 
by comparing its results to the manual segmentation gold standard and to the previously 
published QC’s method. The results obtained for four example cases are shown in Fig. 12. 
We can observe that for these cases, the GA outlines obtained by QC’s method (yellow 
outlines) slightly deviate from the gold standard boundary (expert average, in red), whereas 
the segmentation results obtained by our method (green outlines) seem closer to such gold 
standard. Table 2 summarizes the results of the quantitative comparison between our 
algorithm proposed here and manual gold standard (average expert segmentation) and 
between the previous QC’s method and gold standard. The values obtained by our algorithm 
are displayed in the table in bold face and between parentheses. We also compared the 
differences of each method to each of the manual readers and sessions independently. 
Overall, our method presented higher similitudes to the manual gold standard than QC’s 
method, presenting higher correlation coefficients (0.979 vs 0.97), lower absolute area 
differences (12.95% vs 27.17%), and higher overlap ratio (81.86% vs 72.6%). Lower area 
differences indicate the area estimated by our method seems closer to the values measured by 
hand by an average reader than when estimated by the previous method, which would 
translate into a more accurate GA characterization. The differences observed between our 
method and the manual gold standard were also very similar to those between our method and 
each of the independent readers. These differences were higher than the inter-observer and 
intra-observer differences shown in Table 1, but they were within the same ranges. In fact, the 
paired U-test in measured GA area differences between automated method and each of the 
manual segmentations was not significant (all with p-value > 0.05), while it was significant 
for differences between QC’s method and manual segmentations (all with p-value < 0.05). 
This indicates the results produced by our method seem more similar to manual outlines than 
QC’s method. In conclusion, our algorithm showed better segmentation performance than 
QC’s method when compared to the manual segmentation. 

 

Fig. 12. Segmentation results using the proposed method, QC’s method and average expert 
segmentation (considered as manual gold standard). The cases shown are the same as in Fig. 
11 for direct comparison. The region of interest outlined in orange in each RSVP projection 
image is also shown zoomed in for larger detail. The color label for each segmentation method 
is indicated in the legend in the bottom right. 
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Table 2. Quantitative comparison of our algorithm segmentation results (shown in 
boldface and between parenthesis) and QC’s method results to manual gold standard 

(Avg. Expert) and individual reader segmentation 

 
QC’s (Our Seg.) 
vs. Avg. Expert 

QC’s (Our Seg.) 
vs. Expert A1 

QC’s (Our Seg.) 
vs. Expert A2 

QC’s (Our Seg.) 
Vs. Expert B1 

QC’s (Our Seg.) 
vs. Expert B2 

patients/ cubes 8 / 55 8 / 55 8 / 55 8 / 55 8 / 55 

cc 0.970 (0.979) 0.967 (0.975) 0.964 (0.976) 0.968 (0.976) 0.977 (0.975) 

p-value (U-test) 0.026 (0.221) 0.047 (0.389) 0.024 (0.201) 0.017 (0.138) 0.022 (0.191) 

AAD [mm2] 
1.438 ± 1.26 

(0.811 ± 0.94) 
1.308 ± 1.28 

(0.758 ± 0.99) 
1.404 ± 1.31 

(0.853 ± 1.04) 
1.597 ± 1.33 

(0.984 ± 1.08) 
1.465 ± 1.14 

(0.897 ± 1.05) 

AAD [%] 
27.17 ± 22.06 

(12.95 ± 11.83) 
25.23 ± 22.71 

(12.62 ± 12.86) 
26.14 ± 21.48 

(13.32 ± 12.74) 
29.21 ± 22.17 

(14.91 ± 12.65) 
27.62 ± 20.57 

(14.07 ± 11.78) 

OR [%] 
72.60 ± 15.35 

(81.86 ± 12.01) 
73.26 ± 15.61

(81.42 ± 12.12) 
73.12 ± 15.15

(81.61 ± 12.29) 
71.16 ± 15.42

(80.05 ± 13.05) 
72.09 ± 14.82 

(80.65 ± 12.51) 

A set of example results in the second data set evaluated is shown in Fig. 13, where the 
outlines generated by manual segmentation, commercial software, QC’s method, and our 
method are displayed. We can observe that our method produced results that were similar to 
the manual outlines, correcting limitations observed in prior methods. Table 3 summarizes the 
quantitative evaluation in this second data set, comparing each segmentation method (our 
method presented here, QC’s method, and the commercial software) to the manual outlines 
drawn in FAF images. The correlation coefficients between areas measured using different 
methods were very high, and all U-test p-values testing for differences in area measurements 
showed no statistical significance (p-value > 0.05). The overlap ratio was the highest (70%) 
between our method and the manual segmentation in FAF images, while it was lower than in 
the previous data set (Table 2), most probably due to the intrinsic differences between SD-
OCT and FAF images and possible bias introduced by the registration process. Surprisingly, 
the differences in AAD between our algorithm and manual segmentations (1.215 ± 1.58mm2) 
are slightly higher than between Qiang’s method and manual segmentation (0.951 ± 
1.28mm2), but both were in the same ranges. The higher overlap ratio with the manual 
markings observed for our method, but also slightly higher AAD as compared to QC’s 
method, may be due to QC’s method producing slight regions or both over- and under-
estimation of GA regions, while the method presented here had overall higher similitudes to 
the manual outlines. 

 

Fig. 13. Comparison of outlines generated by manual segmentation, commercial software, 
QC’s method and our method presented here in three GA patients form the second data set. 
The color employed for each outline is indicated in the legend on top of the images. 
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Table 3. Correlation coefficients (cc), paired p-values U-test, absolute differences and 
overlap ratio in areas of GA between our segmentation method (Our Seg.), QC’s method, 
commercial software segmentation (Com. Sw. Seg.), and expert segmentations manually 

outlined in FAF images (FAF) 

Methods compared 
patients / 

cubes 
cc 

p-value 
(U-test) 

AAD [mm2] 
(mean, std) 

AAD [%] 
(mean, std) 

OR [%] 
(mean, std) 

QC’s Seg. - FAF 56 / 56 0.955 0.524 0.951 ± 1.28 19.68 ± 22.75 65.88 ± 18.38 

Our Seg. - FAF 56 / 56 0.937 0.261 1.215 ± 1.58 22.96 ± 21.74 70.00 ± 15.63 

Com. Sw. Seg. - FAF 56 / 56 0.807 0.140 1.796 ± 2.51 34.13 ± 38.62 62.40 ± 21.16 

4. Discussion 

In this work, we have presented a novel automated GA region segmentation method in SD-
OCT images. As summarized in Table 2, our method demonstrated very high accuracy when 
compared to a manual gold standard generated by two different readers and repeated at two 
separated sessions (mean OR = 81.86% ± 12.01%; AAD = 0.811 ± 0.94mm2; cc = 0.979; U-
test p-value = 0.221), and also higher than another known semi-automated technique [17]. 
Our method also showed good agreement with manual segmentations drawn in FAF images 
and later registered to the OCT image domain, presenting higher overlap than for particular 
commercial software and the prior semi-automated technique (Table 3). The example images 
shown in Fig. 12 and Fig. 13 corroborate these findings, highlighting the similitudes between 
our proposed segmentation method and manually drawn outlines. We anticipate that the 
robust results produced by our method may aid the automated characterization of GA area, 
extent, and location, providing a quantitative, objective and reliable approach to measure and 
track GA expansion and progression of advanced non-exudative age-related macular 
degeneration (AMD). These quantifications may aid the discovery of GA-related imaging 
biomarkers and the development of techniques for the prediction of GA appearance and 
extension using automated analysis of OCT images, in a similar manner as currently 
investigated for advanced exudative AMD [30]. Compared to the previously published QC’s 
method [17] and other known semi-automated methods like the one described in [18], our 
method has several advantages. The main advantage is the fully automated nature of our 
method, reducing time and possible subjective judgement derived from observer interaction 
while also producing high-accuracy results, enabling its application in large image data sets. 

One of the main difficulties in automated GA segmentation in SD-OCT images is the high 
noise level and variability, as image quality and noise characteristics vary throughout images 
acquired using machines from the same vendor and even more so across different vendors. A 
key aspect of our work to overcome this difficulty is the design of an improved Chan-Vese 
method considering a local similarity factor (CVLSF). The level-set nature of the method 
allows the algorithm to handle change of topological structure and irregular shapes easily. 
The introduced local similarity factor (LSF), balancing similarities observed by the spatial 
distance and gray level differences within a local window, presents properties that allows the 
results to be less sensitive to noise of higher intensity and of different characteristics. In 
section 3.2 we compared the results at known noise characteristics for the CVLSF method 
and the traditional C-V model, resulting in a higher accuracy observed for the CVLSF model 
for all conditions tested (Figs. 8 and 9). Another novel aspect of the proposed method is the 
initialization of the CVLSF segmentation. We designed an iterative threshold segmentation 
method and a candidate region refinement technique to generate this initialization. 

On the other hand, the method described here still has some limitations. Regions of high 
intensity pixels recorded in the choroid sub-volume considered in the projection image that do 
not correspond to GA may produce artifacts in the method CVLSF initialization that may 
remain in the final segmentation results. These regions of over-segmentation could be 
avoided with manual initialization. For the low intensity regions caused by the deep choroidal 
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vessels and drusen, we can improve GA projection image by considering the contribution 
beneath the RPE layer to fill the low intensity regions produced by the presence of choroidal 
vessels or remove the artifacts by calculating the maximum horizontal intensity profile of the 
GA projection image at each horizontal location to refine the low intensity regions. We 
adapted the second strategy to reduce the effect from the deep large vessels in our work. 
Although the iterative threshold segmentation and refinement using GA candidate regions 
produced overall adequate initialization results, they may not be optimal for some SD-OCT 
images presenting complex choroidal structures. In the future, we plan to integrate more GA 
associated characteristics derived from a three-dimensional approach in the initialization, 
which may further improve the segmentation results and reduce the sensitivity of our method 
to initialization. Another limitation of our algorithm is that removal of the region belonging to 
the optic nerve head, which normally presents high intensity values in the choroid sub-
volume, relies on the Euclidean distance from its coordinates to the image center. Although 
these process seems robust eliminating such regions from the segmentation results, it may 
also cause removal of potential isolated GA regions that are located far from the macula 
center, on the edges of the projection image. For example, Fig. 5(a) displays an isolated GA 
region on the upper left corner of the image that is removed as part of this refinement process, 
as shown in Fig. 5(b). Another limitation of this process is that a priori assumption that the 
SD-OCT image is centered at the center of the fovea. We are currently working in methods 
for detection of optic nerve head within macular SD-OCT images as well as methods to 
accurately center the image in a pre-processing step in order to reduce their influence of this 
limitation while also preserving isolated GA regions at the image borders. 

5. Conclusions 

This paper presents a novel algorithm for automated GA segmentation in SD-OCT images to 
enable robust, accurate, and objective quantitative measurements of GA extent and location 
automatically. The proposed method combines a region-based C-V model with a local 
similarity factor in projection images of a choroid sub-volume. This technique seems more 
robust to presence of noise, while preserving image detail. Quantitative experimental results 
demonstrate that the algorithm shows good agreement when compared to manual 
segmentation by different experts at different sessions and to a consensus manual gold 
standard, resulting in higher agreement than with a previously known semi-automated method 
and a commercially-available software package. The proposed algorithm may be clinically 
useful in providing relatively reliable GA quantitative data that may improve tracking of GA 
extent, location and expansion in patients diagnosed with advanced non-exudative AMD. 
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